
 

International Journal of Discrete Mathematics 
2017; 2(4): 132-135 

http://www.sciencepublishinggroup.com/j/dmath 

doi: 10.11648/j.dmath.20170204.13  
 

Some Bounds of the Largest H-eigenvalue of R-uniform 
Hypergraphs 

Bo Deng
1, 2

, Xia Wang
1
, Chunxia Wang

1
, Xianya Geng

3
 

1Department of Mathematics, School of Mathematics and Statistics, Qinghai Normal University, Xining, China 
2Department of Mathematics, Guangdong University of Petrochemical Technology, Maoming, China 
3Department of Mathematics, Science College, Anhui University of Science and Technology, Huainan, China 

Email address: 

dengbo450@163.com (Bo Deng) 

To cite this article: 
Bo Deng, Xia Wang, Chunxia Wang, Xianya Geng. Some Bounds of the Largest H-eigenvalue of R-uniform Hypergraphs. International 

Journal of Discrete Mathematics. Vol. 2, No. 4, 2017, pp. 132-135. doi: 10.11648/j.dmath.20170204.13 

Received: August 29, 2017; Accepted: September 13, 2017; Published: November 6, 2017 

 

Abstract: The spectral theory of graphs and hypergraphs is an active and important research field in graph and hypergraph 

theory. And it has extensive applications in the fields of computer science, communication networks, information science, 

statistical mechanics and quantum chemistry, etc. The H-eigenvalues of a hypergraph are its H-eigenvalues of adjacent tensor. 

This paper presents some upper and lower bounds on the largest H-eigenvalue of r-hypergraphs. 
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1. Introduction 

A hypergraph � is an ordered pair (�, �), where � is a set 

of elements referred as vertices and � is a family of subsets of 

� called edges. Hypergraph � is said to be r-uniform for an 

integer � ≥ 2 if |�| = � for all � ∈ �(�). For convenience, 

refer r-uniform hypergraphs to r-graphs, and thus a 2-graph 

means a graph. 

The spectral theory of graphs and hypergraphs is an active 

and important research field in graph and hypergraph theory. 

And it has extensive applications in the fields of computer 

science, communication networks, information science, 

statistical mechanics and quantum chemistry, etc. It studies 

graphs by using algebraic properties of associated matrices [1, 

2, 4, 5], such as the adjacency matrix and the Laplacian matrix, 

and has become one of the most active branches in the graph 

theory. In order to generalize spectral techniques to 

hypergraphs, an important tool–tensor [8-10] is used, which 

could reveal more higher order structures than matrices. There 

have been attempts in the literature to define eigenvalues for 

hypergraphs and study their properties [6-8, 11, 14, 16]. 

Most of this work concerns generalizations of the adjacency, 

Laplacian, or signless Laplacian spectrum of graphs. J. 

Cooper and A. Dutle [3] obtain a number of results closely 

paralleling results from classical spectral graph theory, 

including bounds on the largest eigenvalue, a spectral bound 

on the chromatic number, a sub-hypergraph counting 

description of the coefficients of the characteristic polynomial, 

and the spectrum for some natural hypergraph classes and 

operations. 

This paper presents some upper and lower bounds on the 

largest H-eigenvalue of r-hypergraphs. 

2. Preliminaries 

In this section, the definition of eigenvalues of tensors and 

some basic concepts associated uniform hypergraphs are 

presented. Denote the set {1, ⋯ , �} by [�]. 
Definition 2.1 [3]. A tensor � over a set � of dimension 

� and order � is a collection of ��  elements �� �!⋯�"
∈ �, 

where #$ ∈ [�]. 
Let � = ℂ for the following discussion. 

Definition 2.2 [3]. A tensor is said to be symmetric if entries 

which use the same index sets are the same. That is, � is 

symmetric if �� �!⋯�"
= ��&( )�&(!)⋯�&(")

 for all σ ∈ (�, where 

(� is the symmetric group on [�]. 
In the case of graphs, i.e., � = 2, tensors are simply square 

matrices, and symmetric tensors are just symmetric matrices. 

A real order � dimensional � tensor � uniquely defines 

homogeneous degree � polynomial in � variables by 



 International Journal of Discrete Mathematics 2017; 2(4): 132-135 133 

 

)�(x) = ∑ �� �!⋯�"
,
� ,	�!,⋯,�"-. /� /�! ⋯/�" .    (1) 

Definition 2.3 [8]. Call λ ∈ ℂ an eigenvalue of � if there 

is a non-zero vector x ∈ ℂ, , which is an eigenvector, 

satisfying ∑ �$�!⋯�",	�!,⋯,�"-. /�! ⋯/�" = λ/$�2.,    (2) 

for all 3 ∈ [�]. When λ and x are all real, then x is called a 

H-eigenvector associated with the H-eigenvalue λ. 

Assume x�  is the order � dimension � tensor with entry /� /�! ⋯/�"  and x[�]  is the vector with # − th  entry /�� . 
Then the expressions above can be written rather succinctly. 

Equation (1) is equivalent to )��x� = �x� ,              (3) 

where multiplication is taken to be tensor contraction over all 

indices. Similarly, the eigenvalue equations (2) can be written 

as �x�2. = λx�2.,              (4) 

where contraction is taken over all but the first index of �. 

Definition 2.4 [3]. For an �-graph � on � labeled vertices, 

the adjacency tensor �7	is the order � dimension � tensor 

with entries 

�� �!⋯�" = 8 1�� − 1�! 	#:	�#., 	#;, ⋯ , #�� ∈ ��<�,0	otherwise.  

Denote the monomial /� /�! ⋯/�" 	 by /A , where � =�#.,#;⋯ , #�� is an edge of an �-graph. Recall that the link of a 

vertex #  in � , denoted ��#� , is the �� − 1�-graph whose 

edges are obtained by removing vertex # from each edge of � 

containing #. That is, �B��#�C = ��\�#�|# ∈ � ∈ ����� and �B��#�C = ⋃�B��#�C. Then )7�x� = ∑ �/AA∈7 ,            (5) 

and the eigenvalue equations (2) become 

,1

)(

−
∈

=∑
r

iiHe

e xx λ
          (6) 

for all # ∈ ����. 
Definition 2.5 [11]. Let < = ��, ��  be an � -uniform 

hypergraph. If there is a disjoint partition of the vertex set � 

as � = �F ∪ �. ∪⋯�H  such that |�F| = 1  and |�.|= ⋯ =|�H| = � − 1, and � = ��F ∪ ��|# ∈ [I]�, then < is called a 

hyperstar. The degree I of the vertex in �F, which is called 

the heart, is the size of the hyperstar. The edges of <  are 

leaves, and the vertices other than the heart are vertices of 

leaves. 

Definition 2.6 [12]. Let �  and ℬ  be two order K 

dimension � tensors. � and ℬ are diagonal similar, if there 

exists some invertible diagonal matrix L of order � such that ℬ = L2�M2.��L. 

Theorem 2.7 [12]. If the two order K dimension � tensors � and ℬ are diagonal similar, Then )ℬ�λ� = )��λ�. 

3. Main Results 

The main result in this section is as follow. 

Theorem 3.1. Let < = ��, �� be a connected �−graph with 

vertex set [�]. Let � be its adjacency tensor and λ. be the 

largest H-eigenvalue of ��<�. Then 

λ. ≤ K�/�#., 	#;, ⋯ , #�� ∈ ��<�OI�.I�;⋯I��"
   (7) 

Proof. Let x = �/., /;, ⋯ , /,� be a positive eigenvector of 

eigenvalue λ. . Suppose �1,2,⋯ , ��  is the edge with the 

largest product in edge set ��<�. Then by (6), λ./.� ≤ I././;⋯/� , λ./;� ≤ I;/./;⋯/� , λ./�� ≤ I�/./;⋯/� . 

Multiplying the left and the right sides of above inequalities, 

respectively. So λ.�/.�/;�⋯/�� ≤ I.I;⋯I��/./;⋯/��� .   (8) 

That is 

λ. ≤ OI.I;⋯I�"
, 

λ. ≤ K�/�#., 	#;, ⋯ , #�� ∈ ��<�OI�.I�;⋯I��"
   (9) 

In [13], authors give another upper bound on the largest 

H-eigenvalue of �-uniform hypergraphs as follow. 

Theorem 3.2 [13]. Let < = ��, �� be a connected �−graph 

with vertex set [�]. Let � be its adjacency tensor and λ. be 

the largest H-eigenvalue of ��<�. Then 

λ. ≤ K�/�#., 	#;, ⋯ , #�� ∈ ��<� OI�.�2.I�;⋯I��!�"P �
   (10) 

Comparing with Theorem 3.1, it is easy to find that the 

bound of the largest H-eigenvalue in Theorem 3.1 is tighter 

than that of Theorem 3.2 in the case of hyper-stars with the 

condition I�. ≥ I�; ≥ ⋯I�� , for any edge �#., 	#;, ⋯ , #�� ∈��<�. 
Example. 

 
Figure 1. Hyper-Star <.. 
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From Figure 1, λ. ≤ √3S
 and λ. ≤ √3 hold by Theorem 1 

and Theorem 2, respectively. Next, two lower bounds of the 

largest H-eigenvalue of connected �−graphs will be given. 

Theorem 3.3. Let	< = ��, �� be a connected r−graph with 

vertex set [�]. Let � be its adjacency tensor and λ. be the 

largest H-eigenvalue of ��G�. Then 

λ. ≥ K#��#., 	#;, ⋯ , #�� ∈ ��<� OI�.�2.I�;⋯I��!�"P �
   (11) 

Proof. Let x = �/., /;, ⋯ , /,� be a positive eigenvector of λ.. Suppose �1,2,⋯ , �� is the edge with the smallest product 

in edge set ��<� . Let /.  be the least entry among �/., /;, ⋯ , /��. Then by (3), 

I./;/U⋯/� ≤ V /A = λ./.�2.,A∈W�.�  

I;/.�2. ≤ V /A = λ./;�2.,A∈W�;�  

IU/.�2. ≤ V /A = λ./U�2.,A∈W�U�  

I�/.�2. ≤ V /A = λ./��2..A∈W���  

From above second inequality to r − th  inequality, 

multiply the left and the right sides of them, respectively. So 

2( 1) 1 1
2 3 1 2 31 ( ) .− − −≤⋯ ⋯

r r r
r rd d d x x x xλ

     (12) 

For the first inequality, take � − 1 powers of two sides. So 

21 1 1 ( 1)
1 2 3 1 1( ) .− − − −≤⋯

r r r r
rd x x x xλ

      (13) 

By (12) and (13), it arrives 

OI.�2.I;IU⋯I�!�"P � ≤ λ.,         (14) 

and 

λ. ≥ K#��#., 	#;, ⋯ , #�� ∈ ��<� OI�.�2.I�;⋯I��!�"P �
    (15) 

Theorem 3.4. Let < = ��, �� be a connected �-graph with 

vertex set [�]. Let � be its adjacency tensor and λ. be the 

largest H-eigenvalue of ��G�. Then 

λ. ≥ K#��#� ∑ HX!⋯HX"�X ,X!,⋯X"�∈Y�Z�HX"P         (16) 

Proof. Let L be a � × � diagonal matrix with all degrees 

of vertices of < as its diagonal elements. That is 

\I. 00 I; ⋯ 0⋯ 0⋯ ⋯0 0 	⋯ ⋯	⋯ I,] 

Let ℬ = L2��2.��L . That is �  and ℬ  are diagonal 

similar. By the definition of tensor product in [13], it has 

ℬ� �!⋯�" = ^I� 2��2.��� �!⋯�"I�! ⋯I�" 	#:	�#., 	#;, ⋯ , #�� ∈ ��<�,0	otherwise.  

Obviously, �  and ℬ  have the same eigenvalues by 

Theorem 2.7. Let x be a positive eigenvector of the largest 

H-eigenvalue λ. of ℬ. Let /$ be the least entry of x. Then 

I$2��2.��	∑ I�! ⋯I�"�$,�!,⋯�"�∈_�W� )	/$�2. ≤I$2��2.� 	∑ �I�! ⋯I�"/�! ⋯/�"�$,�!,⋯�"�∈_�W� ) 

=λ./$�2.                 (17) 

So 

I$2��2.��	∑ I�! ⋯I�"�$,�!,⋯�"�∈_�W� )	≤ λ.,     (18) 

and 

λ. ≥ K#��#� ∑ HX!⋯HX"�X,X!,⋯X"�∈Y�Z�HX"P        (19) 

4. Conclusion 

In this paper, with using degrees of hypergraphs, several 

upper bounds and lower bounds are given. By the proofs of 

above results, the relations between degrees of hypergraphs 

and their characteristic equations should be known clearly. 

Moreover, other invariants such as their diameters, matching 

numbers of hypergraphs may be also play a role in estimating 

their eigenvalues. Thus, the further research on this topic can 

be done along these directions. 
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