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Abstract: The intersection topic is quite popular at an interdisciplinary level. It can be the friends of geometry, geodesy and 

others. The curves of intersection resulting in this case are not only ellipses but rather all types of conics: ellipses, hyperbolas 

and parabolas. In text books of mathematics usually only cases are treated, where the planes of intersection are parallel to the 

coordinate planes. Here the general case is illustrated with intersecting planes which are not necessarily parallel to the 

coordinate planes. We have developed an algorithm for intersection of a hyperboloid and a plane with a closed form solution. 

To do this, we rotate the hyperboloid and the plane until inclined plane moves parallel to the XY plane. In this situation, the 

intersection ellipse and its projection will be the same. This study aims to show how to obtain the center, the semi-axis and 

orientation of the intersection curve.  
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1. Introduction 

1.1. Definition of Hyperboloid 

Let a hyperboloid be given with the three positive semi 

axes a, b, c see Fig. 1 

2 2 2

2 2 2
1

X Y Z

a b c
+ − = ±  (Hyperboloid equation)   (1) 

+1 where on the right hand side of (1) corresponds to a 

hyperboloid of one sheet, on the right hand side of -1 to a 

hyperboloid of two sheets.  

1.2. Parameterization of Hyperboloid 

Cartesian coordinates for the hyperboloids can be defined, 

similar to spherical coordinates, keeping the azimuth angle θ 

∈ [0, 2π), but changing inclination v into hyperbolic 

trigonometric functions: 

One-surface hyperboloid: v ∈ (−∞, ∞) 

  

a)Hyperboloid of one sheet                                                  b)Hyperboloid of two sheets 

Figure 1. Hyperboloid. 
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1.3. Generalised Equation of Hyperboloid 

More generally, an arbitrarily oriented hyperboloid, 

centered at v, is defined by the equation 

(x-v)
T
 A (x-v) = 1 

where A is a matrix and x, v are vectors. 

The eigenvectors of A define the principal directions of the 

hyperboloid and the eigenvalues of A are the reciprocals of the 

squares of the semi-axes: 1/a
2
, 1/b

2
 and 1/c

2
. The one-sheet 

hyperboloid has two positive eigenvalues and one negative 

eigenvalue. The two-sheet hyperboloid has one positive 

eigenvalue and two negative eigenvalues. [5], [13], [4] 

Basically everyone knows that intersection of a sphere and 

plane is a circle. But when we make a common solution of 

the sphere equation with the plane equation, it will give us an 

ellipse that is not a circle. While the solution in R3 space we 

have to eliminate one of the X,Y and Z parameters. In this 

case it is clear that there will be three possible solutions. 

Three of them are generally different ellipses from each 

other. For example, if we eliminate the parameter Z, we get 

the following ellipse equation on the XY plane that is the 

projection of the true intersection circle.  

Similarly we find the intersection a Hyperboloid and a 

plane is an ellipse with a common solution. But it is not true 

curve. That is projection of the true intersection curve. The 

intersecting curve’s plane is not parallel to the XY plane. 

This is why the two curves are different from each other. 

In this study, we will be shown how to obtain the center, 

the semi-axis and orientation of the intersection curve.  

As related to this subject limited number of studies was 

found in literature. Some of them are [9], [6] [10], [16], [15]. 

I think Klein's study [9] is a good study. But understanding 

his study requires familiarity with differential geometry. In 

this study we have put forward an alternative method 

addition to the Klein's study. We believe that our method is 

easier than to understand Klein’s. 

Our method is an easy way to understand the unfamiliar 

differential geometry. As also differently, we calculate the 

intersection curve’s orientation information. Because the 

orientation information is extremely necessary especially in 

the curvature of surface. 

Here, our aim is to achieve the true intersection curve. To 

do this, we rotate the Hyperboloid and the plane until 

inclined plane moves parallel to the XY plane. In this 

situation, the intersection curve and its projection will be the 

same. Of course, in this case we will need to use the new 

equation of Hyperboloid because the Hyperboloid is no 

longer in standard position, it is rotated and shifted. The same 

situation is also valid for the intersection of plane and 

rotational ellipsoid and other quadratic surfaces. 

Generally, a Hyperboloid is defined with 9 parameters. 

These parameters are; 3 coordinates of center (xo,yo,zo), 3 

semi-axes (a,b,c) and 3 rotational angles (ε, ψ, ω) which 

represent rotations around x-,y- and z- axes respectively. 

These angles control the orientation of the hyperboloid.  

2. Intersection of an Hyperboloid and a 

Plane 

The intersection topic is quite popular at an 

interdisciplinary level. It can be the friends of geometry, 

geodesy and others. The curves of intersection resulting in 

this case are not only ellipses but rather all types of conics: 

ellipses, hyperbolas and parabolas. In text books of 

mathematics usually only cases are treated, where the planes 

of intersection are parallel to the coordinate planes. Here the 

general case is illustrated with intersecting planes which are 

not necessarily parallel to the coordinate planes. We have 

developed an algorithm for intersection of a hyperboloid and 

a plane with a closed form solution. To do this, we rotate the 

hyperboloid and the plane until inclined plane moves parallel 

to the XY plane. In this situation, the intersection ellipse and 

its projection will be the same. This study aims to show how 

to obtain the center, the semi-axis and orientation of the 

intersection curve. Here plane equation 

AX X + AY Y + AZ Z + AD =0 (Plane equation)       (2) 

2.1. The Classification of Intersection 

It appears that the classification of hyperbolic conic 

sections goes back to an 1882 paper by William E. Story 

[13]: 

Story classifies conic sections according to the number and 

multiplicities of intersections between the conic section and 

the boundary circle. This results in eight types of conic 

sections 

1. An ellipse is an ellipse contained entirely within the 

interior of the unit disk. 

2. A hyperbola is a conic section that intersects the unit 

circle at four different points. (Such a conic section may 

be a portion of an ellipse, parabola, or hyperbola in the 

Euclidean plane, though which of these three types it is 

may change under hyperbolic isometries.) 

3. A semi-hyperbola is a conic section that intersects the 

unit circle transversely at two different points. (Again, 

this may be an ellipse, parabola, or hyperbola in the 

Euclidean plane.) 

4. An elliptic parabola is an ellipse or circle in the disk 

that intersects the unit circle at one point of tangency. 

5. A hyperbolic parabola is a conic section that intersects 

the unit circle three times, with one being a point of 

tangency. 

6. A semi-circular parabola is a conic section that has the 

unit circle as one of its osculating circles (i.e. they have 

a point of third-order contact) and also intersects the 

unit circle at one additional point. 

7. A horocycle (called a “circular parabola” by Story) is an 

ellipse in the unit disk that has a fourth-order contact 

with the unit circle. That is, it is an ellipse that has the 

unit circle as an osculating circle at one of the endpoints 

of its minor axis. 
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8. A circle is a circle contained entirely in the interior of 

the unit disk, and an equidistance conic is an ellipse that 

is tangent to the unit disk at two points. (Story refers to 

both of these cases simply as “circles”.) 

Story mentions that some of these eight types can be 

further subdivided, and later authors often increased the 

number of types to 11 or 12. For example, a classification 

into 12 types can be found on pg. 142 in [14]. 

Let’s assume that XO, YO, ZO are the coordinates of the 

center of the intersection curve (ellipses, hyperbolas and 

parabolas) and ai, bi are the major and minor semi-axes of the 

intersection curve. 

We can start with the common solution of two equations 

(Eq.1-2). If we eliminate the parameter Z, we get the 

following ellipse equation on the XY plane that is the 

projection of the intersection curve. 

A X
2
 + B X Y + C Y

2
 + D X + E Y + F =0      (3) 

These coefficients are calculated from the common 

solution is obtained from the two equations the hyperboloid 

and plane equation. 

A= 1/a
2
 + (Ax

2
) / (Az

 2
 c

2
) 

B= (2 Ax Ay) / (Az
 2
 c

2
) 

C= 1/b
2
 + (Ay

2
) / (Az

2
c

2
)                         (4) 

D= (2 Ax AD) / (Az
2
c

2
) 

E= (2 Ay AD) / (Az
2
c

2
) 

F= AD
2
/ (Az

2
c

2
) – 1 

When we solve the Eq.3, we get five ellipse parameters. 

They are: 

XO,YO (center of ellipse in XY plane) 

ao, bo (major and minor semi axis of ellipse in XY plane) 

θ (orientation angle between X axis and semi major axis) 

/ 2 / 2

/ 2 / 2

/ 2 / 2

o

F D E

M D A B

E B C

 
 =  
  

 M=� � �/2
�/2 � �            (5)

 

λ1, λ2: eigenvalues of M matrices (λ1< λ2) 

1det( ) / (det( ) )o oa M M λ= −  

(major semi-axis of intersection ellipse)                (6) 

2det( ) / (det( ) )o ob M M λ= −  

(minor semi-axis of intersection ellipse)               (7) 

XO=(B E-2 C D) / (4 A C-B
2
)                 (8) 

YO=(B D-2 A E) / (4 A C-B
2
)                    (9) 

(coordinates of intersection ellipse’s center) 

ZO= -(Ax Xo + Ay Yo + AD) / Az              (10) 

tan 2 θ = 

���		                  (11) 

(orientation angle of projection ellipse) 

Now we rotate together the hyperboloid and the plane until 

inclined plane move parallel to the XY plane. In this situation 

the intersection ellipse and its projection will be the same. 

For this the origin of the XYZ system must be moved to 

points of Po (XO, YO, ZO). We need the transformation 

parameters. 

R3x3-rotation matrix is obtained from the rotational angles 

cos cos       cos sin sin sin cos        sin sin cos sin cos

cos sin     cos cos sin sin sin        sin cos cos sin sin  

      sin                  -sin cos                                 cos

R

ψ ω ε ω ε ψ ω ε ω ε ψ ω
ψ ω ε ω ε ψ ω ε ω ε ψ ω

ψ ε ψ ε

+ −
= − − +

cos         ψ

 
 
 
  

                   (12) 

This is a 3D transformation equation without scale. 

o

o

o

XX x

. Y Y . y

Z zZ

R

    
    = +    
        

                     (13) 

This transformation equation can be written more simply 

with T Expanded transformation matrix as follows [1, 2, 3]. 

T4x4- expanded transformation matrix is obtained from the 

R3x3 rotational matrix and the shifted parameters (XO,YO, ZO) 

T =
0

0

0

R
3x3

0 0 0 1

X

Y

Z

 
 
 
 
 
 

 

T
-1

 =
0

T
3x3 0

0

R

0 0 0 1

T

T

T

X

Y

Z

 
 
 
 
 
 

                                (14) 

1

i

i

i

X

Y

Z

 
 
 
 
 
 

= T 

1

i

i

i

x

y

z

 
 
 
 
 
 

 and

1

i

i

i

x

y

z

 
 
 
 
 
 

 = T
-1

 

1

i

i

i

X

Y

Z

 
 
 
 
 
 

           (15) 

2.2. Determination of Transformation Parameters 

Shifted parameter XO, YO, ZO are intersection of ellipse’s 

center coordinates that is founded before (Eq.8-10). We must 

find three rotation angles (ε, Ψ, ω). For this, we take 

advantage of the nearest plane’s point from the origin. The 

point Q on a plane AX.X + AY.Y + AZ.Z + AD = 0 that is 
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closest to the origin has the Cartesian coordinates (qx,qy,qz) 

[11]. 

Where 

2 2 2 

x D
x

x y z

A A
q

A A A
=

+ + 2 2 2 

y D

y

x y z

A A
q

A A A
=

+ +

2 2 2 

z D
z

x y z

A A
q

A A A
=

+ +
                    (16) 

And rotation angles (ε, Ψ, ω) 

ε = 0                           (17) 

2 2
/ 2 arctan

 

z

x y

q

q q
ψ π

 
 = −
  + 

                      (18) 

arctan
y

x

q

q
ω π

 
= −  

 
                       (19) 

Of course, in this case we will need to use the new 

equation of hyperboloid. Because the hyperboloid is no 

longer in standard position it is rotated and shifted. We have 

to reverse 3D transformation to the new hyperboloid 

parameters. 

Before we found transformation parameter XO, YO, ZO, ε, 

Ψ, ω. These parameters are used transformation from XYZ to 

xyz. Let's see how to find the reverse transform parameters 

(XOT, YOT, ZOT, εT, ΨT, ωT) for the transformation from xyz to 

XYZ 

To find inverse transformation parameters we can take 

advantage of the inverse of the T matrix The reverse 

transformation parameters (XOT,YOT, ZOT, εT, ΨT, ωT) are 

located to T
-1

 inverse matrix. Reverse shifted parameters 

(XOT, YOT, ZOT) is located the inverse matrix T
-1

 in column 

fourth. Reverse rotation angles are calculated from the 

elements of the matrix R as follows 

εT  = -arc tan (R23/R33)                      (20) 

                              ψT = arc sin (R13)                            (21) 

ωT  = -arc tan (R12/R11)                      (22) 

Now we can write a new hyperboloid equation rotated and 

shifted, to do this, we put (Eq.13). into (Eq.1) standard 

hyperboloid equation 

1/a
2
[(X-XOT) cosΨT cosω T +(Y-YOT)(- cosΨT) sinωT +(Z-

ZOT) sinΨT]
2 

+ 1/b
2
[(X-XOT)(cosεT sinωT + sinεT sinΨT cosωT) 

+ (Y-YOT) (cosεT cosωT - sinεT sinΨT sinωT) - (Z-ZOT) 

sinεT) cosΨT]
 2 

- 1/c 
2
[(X-XOT)( sinεT sinωT - cosεT sinΨT cosωT) 

+ (Y-YOT)( sinεT cosωT +cosεT sinΨT sinωT)+ (Z-ZOT) cosεT 

cosΨT]
 2
 = ±1                            (23) 

In this equation if we put z = 0 we obtain a conical 

intersection ellipse equation form as follows. 

1/a
2 

[(X-XOT) cosΨT cosω T +(Y-YOT)(- cosΨT) sinωT -ZOT 

sinΨT]
2 

+ 1/b
2 
[(X-XOT)( cosεT sinωT + sinεT sinΨT cosωT) 

+ (Y-YOT) ( cosεT cosωT - sinεT sinΨT sinωT)+ZOT sinεT) 

cosΨT]
2 

- 1/c 
2
[(X-XOT)( sinεT sinωT - cosεT sinΨT cosωT) 

+ (Y-YOT)( sinεT cosωT +cosεT sinΨT sinωT)-ZOT cosεT 

cosΨT]
2
 =±1                            (24) 

Above conic equation rearranged beloved the intersection 

ellipse’s conic equation obtained. 

A X
2
 + B X Y + C Y

2
 + D X + E Y + F=0         (25) 

When we solve the above ellipse equation, we get five 

ellipse parameters of intersection ellipse (XO, YO, ai, bi, θ). 

As a result we have presented computational results that 

were realized in MATLAB. 

3. Conclusion 

In this study, we have developed an algorithm for 

intersection of a hyperboloid and a plane with a closed form 

solution. The efficiency of the new approaches is 

demonstrated through a numerical example. The presented 

algorithm can be applied easily for spheroid, sphere and 

also other quadratic surface, such as paraboloid and 

ellipsoid. 
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