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Abstract: In the present paper, the authors approach is based on the use of Dirichlet averages of the generalized Wright-type 

hyper geometric function introduced by Wright in like the functions of the Mittag-Leffler type, the functions of the Wright type 

are known to play fundamental roles in various applications of the fractional calculus. This is mainly due to the fact that they 

are interrelated with the Mittag-Leffler functions through Laplace and Fourier transformations. 
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1. Introduction 

Our translation of real world problems to mathematical 

expressions relies on calculus, which in turn relies on the 

differentiation and integration operations of arbitrary order 

with a sort of misnomer fractional calculus which is also a 

natural generalization of calculus and its mathematical 

history is equally long. It plays a significant role in number 

of fields such as physics, rheology, quantitative biology, 

electro-chemistry, scattering theory, diffusion, transport 

theory, probability, elasticity, control theory, engineering 

mathematics and many others. Fractional calculus like many 

other mathematical disciplines and ideas has its origin in the 

quest of researchers for to expand its applicationsto new 

fields. This freedom of order opens new dimensions and 

many problems of applied sciences can be tackled in more 

efficient way by means of fractional calculus.  

The purpose of this paper is to increase the accessibility of 

different dimensions of q-fractional calculus and 

generalization of basic hypergeometric functions to the real 

world problems of engineering, science and economics. 

Present paper reveals a brief history, definition and 

applications of basic hypergeometric functions and their 

generalizations in light of different mathematical disciplines. 

The Dirichlet averages of a function are a certain kind of 

integral average with respect to Dirichlet measure. The 

concept of Dirichlet averages was introduced by Carlson in 

1977, based on an integral evaluated by Dirichlet in 1839. It 

is studied among others by Carlson [1, 2&3], Zu Castell [4], 

Massopust and Forster [5], Neuman and Van fleet [6] and 

others. A detailed and comprehensive account of various 

types of Dirichlet averages has been given by Carlson in his 

monograph [7]. Most of the important special functions can 

be represented as Dirichlet averages of the functions 

��and 	�� , and there are significant advantages in defining 

them this way instead of by hypergeometric power series. 

The theory of Dirichlet averages is not restricted to functions 

of hypergeometric type, because any function that is analytic 

or even integrable can be averaged with respect to a Dirichlet 

measure. If the function is twice continuously differentiable, 

its Dirichlet average satisfies one or more linear second order 

partial differential equations that are characteristic of the 

averaging process, and are related to some of the principal 

differential equations of mathematical physics. In this 

connection we can refer to the works of Saxena, Kilbas and 

Sharma etc. Moreover a detailed account on Dirichlet 

average of a function has been extensively dealt with in the 

lecture notes of Professor P. K. Banerji [8]. 

In the present paper we make the use of Riemann-

Liouville integrals and Dirichlet integrals which is a 

multivariate integral and the generalization of a beta integral. 

Finally, we deduce representations for the Dirichlet averages 
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��(�, �′; x, y) of the Wright type hypergeometric function 

with the fractional integrals, in particular. Riemann −
Liouville	integrals. Special cases of the established results 

associated with Wright type hyper geometric function have 

also been discussed. 

2. Mathematical Preliminaries 

Wright type Hypergeometric function: The generalized 

form of the hypergeometric function has been investigated by 

Dotsenko [10], Malovichko [11] and one of the special case 

is considered by Dotsenko [10] as  

,
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And its integral representation expressed as  
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Where Re(c)	> ��(�) > 0. This is the analogue of Euler’s formula for Gauss’s hyper geometric functions [10]. In 2001 

Virchenkoetal [9] defined the said Wright type Hypergeometric function by taking 
@
A = 	C > 0 inabove equation as 
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If C	=1, then (2) reduces to Gauss’s hyper geometric 

function. 

Standard simplex in �(	, n ≥ 	1:We	denote the standard 

simplex in �(	, KLM	N ≥ 	1 by 

E = O( = (P7	, PQ, …	P(	);	P7	 ≥ 0, PQ	 ≥ 0, …,P(	 ≥ 0 and 

P7	 +	PQ	+	PT	 + P(	⦤	1}. 

Dirichlet Measures: Let b ϵ��>; k ≥ 2and let E = O�47	 be 

the standard simplex in ��47	. The	complex measure 	�%	 is 

defined by [1]  

W3X(u) = 
7

Y(%)P7	
%Z47PQ	%[47PT	%\47… P�%D]Z47 × 

	(1 − P7	, 1 − PQ, …	1 − P�47	)%D47W_ZW_[W_\…W_D]Z. 

Here B(b) = B(�7	, �Q	, … , ��	) = 
 (%Z) (%[)… (%D)
 (%Z'%['⋯.%D)

 

Dirichlet Averages: Dirichlet averages are discussed in the 

book by Carlson [1] and related to univariate and 

Multivariate B-splines in [3]. Dirichlet averages have 

produced deep and interesting connections to special 

functions. In this section, we extend the notion of the 

Dirichlet average to the infinite dimensional setting and show 

that under mild conditions on the weights, the results 

important for our interests do also hold on ∆-. In particular, 

we show that using a geometric interpretation, the Reimann-

Liouville fractional derivative and integral can be applied to 

Dirichlet averages. 

Let Ώbe a convex set in C and let z = (97	, 9Q, …	9(	) ϵΏc, 

n≥2, and let f be a measurable function on Ώ. We define  

F (b; z) =
1

( ) ( )
b
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∫ , where W3X(u) is a Dirichlet 

Measure. 

B (b) = B (�7	, �, … , �(	) = 
(%Z) (%[)… (%1)
 (%Z'%['⋯'%1)

, R(�d	) > 0, j = 1,2,3…,n 

And 
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For n = 1, K(�; 9) = f(z),  

for n = 2, we have  

W3f,fg(u) = 
 (h'hi)
 (h) (hi)P

h47(1 − P)hg47d(u). 

Carlson [10] investigated the average as follows: 

Dirichlet Averages for the power function: K(9) = 	 9�	 , 
kϵR, 

��(b;z) = 
1

( ) ( )
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n

k
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−
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Also for n = 2, Carlson proved that 

��(�, �′;�, y) = 
7

Y(h,hi)5 [P� + (1 − P)k]�7
/ Ph47(1 − P)hg47d(u),                                           (3) 

Where �, �′ϵC, min [R (�), R(�′)] > 0, �, km	�.  

This section is devoted to the study of the Dirichlet averages of the Wright-type hypergeometric function (2) in the form 

Qn7
3，: o)�, �� p(�, �′; x, y),s=5

,

2 1R µ ω
(PL9).

tZ W3ffg(u)                                                   (4)

Where R(�) > 0, R(�′) > 0;	�, k	m	� and �, �′ϵ C. 

Fractional Calculus and its Elements:  

The concept of fractional calculus is not new. It is believed 

to have stemmed from a question raised by L‟Hospital on 

September 30th, 1695, in a letter to Leibniz, about 
u1v
u�1 , 

Leibniz‟s notation for the nth derivative of the linear 

function f(x)= x. L‟Hospital curiously asked what the result 
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would be if n= 
7
Q Leibniz responded prophetically that it 

would be an apparent paradox from which one day useful 

consequences would be drawn. 

Following this unprecedented discussion, the subject of 

fractional calculus caught the attention of other great 

mathematicians, many of whom directly or indirectly 

contributed to its development. This included Euler, Laplace, 

Fourier, Lacroix, Abel, Riemann and Liouville. Over the 

years, many mathematicians, using their own notation and 

approach, have found various definitions that fit the idea of a 

non-integer order integral or derivative. One version that has 

been popularized in the world of fractional calculus is the 

Riemann-Liouville definition. It is interesting to note that the 

Riemann-Liouville definition of a fractional derivative gives 

the same result as that obtained by Lacroix. 

In this section we present a brief sketch of various 

operators of fractional integration and fractional 

differentiation of arbitrary order. Among the various 

operators studied, it involves the Riemann-Liouville 

fractional operators, weyl operators and Saigo‟s operators 

etc. There are more than one version of the fractional integral 

operator exist. The fractional integral can be defined as 

follows: 

Riemann-Liouville fractional integrals: As defined in [6] 

(w$'	x f)	� = 
7

 (x)5 (� − 6)x47�
$ K(t) dt, (� > �, �m�).      (5) 

Thus, in general the Riemann-Liouville fractional integrals 

of arbitrary order for a function f(t), is a natural consequence 

of the well-known formula (Cauchy-Dirichlets?) that reduces 

the calculation of the n-fold primitive of a function f (t) to a 

single integral of convolution type. 

3. Main Results 

Representation of ��  and 
,

2 1M µ ω
 in terms of Reimann-

Liouville Fractional Integrals. 

In this section we deduce representations for the Dirichlet 

averages Ry(β, �′, x, y)and 
,

2 1 ( , '; , )M x yµ ω β β with fractional 

integral operators. 

Theorem: Let	�, �′ϵ complex numbers, R(�) > 0, R(�′) > 

0, and �,y be real numbers such that � > k	and 1+∑ {d|
d.7  - 

∑ }d~
d.7 ≥ 0,and 

,
2 1M µ ω

 and w$'	x  be given by (4) and (5) 

respectively. Then the Dirichlet average of the generalized 

Fox- wright functions is given by 

Qn7
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x
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Where �, �′ ϵ C, R(� ) > 0, R(�′ ) > 0, � ,y ϵ R and 

1+∑ {d|
d.7  - ∑ }d|

d.7 ≥ 0 (equality only holds for appropriately 

bounded z). 

Proof: According to equations (1) and (2) we have, 
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Putting	u(x − y) = 	t	in above equation, we get  
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This proves the theorem. 

4. Conclusion 

Here we concluded with that that Dirichlets average of a 

function denotes certain kind of integral average with respect 

to a Dirichlets measure. Most of the important special 

functions can be represented as Dirichlets averages of the 

functions �� and �� , and there are significant advantages in 

defining them this way instead of by hypergeometric power 

series. The theory of Dirichlets averages is not restricted to 

functions of hypergeometric type, because any function that 

is analytic or even integrable can be averaged with respect to 

a Dirichlets measure. If the function is twice continuously 

differentiable, its Dirichlets average satisfies one or more 

linear second order partial differential equations that are 

characteristic of the average process, and are related to some 

of principal differential equations of mathematical physics. In 

this connection one can refer to the works of Saxena, Kilbas 

and Sharma etc. Moreover for the detailed account on 

Dirichlets average of a functionone should go through 

lectures of Professor P. K. Banerji. 



 International Journal of Discrete Mathematics 2017; 2(1): 6-9 9 

 

Finally we conclude with the remark that the results and 

the operators proved in this paper appear to be new and likely 

to have useful applications to a wide range of problems of 

mathematics, statistics and physical sciences.  
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